Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков
В своей книге «Душа» (Psyche), написанной за год до смерти, Бергер вновь обращается к проблеме экстрасенсорного восприятия, оценивая способность электроволновой модели объяснить этот феномен и приходя к неизбежному выводу о том, что электромагнитная экстрасенсорика вряд ли возможна. Электромагнитные волны, испускаемые мозгом, слишком слабы для того, чтобы преодолевать сколь-нибудь значимое расстояние по воздуху[981]. Таким образом, результатом многолетних исследований Бергера стало крушение его первоначальных надежд. Однако он, будучи добросовестным исследователем, не стал предаваться самообману. Подобно средневековым алхимикам, получившим ценные для науки результаты в попытках достичь иллюзорной цели, Бергер обогатил современную науку и медицину ценными знаниями и инструментами.
4.2.3 Первые математические модели нейрона — Хорвег, Вейс и Лапик
Итак, первые шаги в изучении электрической активности нервной системы были сделаны. Однако для того, чтобы приблизиться к возможности создания устройства, симулирующего работу мозга, нужно было идти дальше. И важной задачей, стоявшей перед исследователями, было изучение физических характеристик отдельных строительных кирпичиков мозга — нейронов и их отростков — аксонов и дендритов. Нервные волокна, пронизывающие тело человека и других животных, как раз и есть не что иное, как длинные отростки нейронов, покрытые глиальными оболочками.
Нейроглия, или просто глия (от др.-греч. γλία — клей), — это совокупность вспомогательных клеток нервной ткани, составляющих около 40% объёма центральной нервной системы. Глия состоит из различных типов клеток, выполняющих различные функции. Например, олигодендроциты формируют оболочки, окружающие тела нейронов, и выполняют изолирующую и опорную функции. Эти оболочки и называют глиальными.
Ещё со времён Гальвани было известно, что нервы возбуждаются под воздействием электричества. Но каковы должны быть параметры этого воздействия? Как успех стимуляции нерва зависит от силы и продолжительности импульса электрического тока и какие биофизические процессы лежат в основе этой зависимости?
В 1840-е гг. этими вопросами задался отец-основатель электрофизиологии Эмиль Дюбуа-Реймон. Отталкиваясь от результатов экспериментов, он пришёл к выводу, что электрический ток оказывает возбуждающее действие на нерв или мышцу только при изменении его силы. Согласно теории Дюбуа-Реймона, постоянный ток способен возбуждать нерв только в начале и в конце своего импульса, а не в средней части импульса, когда сила тока не меняется. Если это так, то пороговая сила (т. е. минимальная сила тока, достаточная для возбуждения нерва) должна быть полностью независима от длительности импульса. Ни абсолютное значение силы тока, ни количество электричества, переносимого по нерву, не играют особой роли, важна только величина перепада в силе тока. Дюбуа-Реймон опубликовал свои выводы в работе под названием «Исследование животного электричества» (Untersuchungen über tierische Elektrizität)[982], увидевшей свет в 1848 г.
Авторитет Дюбуа-Реймона во второй половине XIX в. был столь велик, что даже в случаях, когда результаты опытов входили в явное противоречие с его теорией, получившей известность как «основной закон возбуждения», другие электрофизиологи предпочитали не подвергать её сомнению. В течение десятилетий исследователи прилагали все возможные усилия, чтобы согласовать с нею новые экспериментальные данные[983].
Например, немецкий физиолог Адольф Фик в ходе экспериментов обнаружил, что длительность импульса тока является важным фактором возбуждения. Фик писал, что при заданном уровне силы тока он должен поддерживаться в течение определённого времени, чтобы произвести эффект[984]. Он также заметил, что некоторые мышцы беспозвоночных остаются в состоянии устойчивого сокращения, пока поддерживается ток (без каких-либо изменений в его силе). Существование таких устойчивых реакций мышцы прямо противоречит фундаментальному закону Дюбуа-Реймона. Казалось бы, этих результатов было достаточно, чтобы подвергнуть общепринятую теорию пересмотру. Вместо этого Фик резюмирует: «Принципиально новая формулировка закона мышечного возбуждения пока что не рассматривается». Примерно так же поступили Иоганн Крис[985] и Эдуард Пфлюгер[986].
Однако факты — упрямая вещь, и по мере накопления экспериментальных данных становилось всё труднее и труднее мириться с их несоответствием теории. Первым, кто открыто бросил вызов общепризнанной доктрине, стал учёный из Утрехта Ян Хорвег[987].
В своих многочисленных опытах Хорвег использовал для стимуляции нервов разряды лабораторных электрических конденсаторов Гефа с переключаемой ёмкостью от 1 до 1000 нФ. Эксперименты проводились на теле человека. В статье не указывается, на какую именно часть тела накладывались электроды, но, по всей видимости, это была рука. Для зарядки конденсаторов применялась батарея, содержавшая сорок элементов Лекланше[988] напряжением 1,5 В, что позволяло получить напряжение от 1,5 до 60 В[989].
Обобщив экспериментальные данные, учёный пришёл к выводу, что пороговое напряжение, необходимое для стимуляции нерва (успех стимуляции определялся по минимальному подёргиванию мышцы), описывается следующей эмпирической зависимостью:
V = aR + b/C,
где R — сопротивление электрической цепи, C — ёмкость конденсатора, а a и b — некоторые константы.
Следовательно, напряжение, необходимое для стимуляции нерва, возрастает по мере уменьшения ёмкости. Заряд, необходимый для стимуляции, q = V × C, уменьшается с уменьшением C до конечного предельного значения b. Напротив, электрическая энергия ½ CV ² достигает минимума при некоторой определённой величине ёмкости. Хорвег сделал следующий вывод: «Возбуждение нерва не является следствием изменения силы тока di/dt…; процесс возбуждения является только функцией силы тока i(t)». Это заявление, по всей видимости, стало первой решительной критикой закона Дюбуа-Реймона.
В 1892 г. Хорвег опубликовал статью[990] со своими смелыми выводами в журнале Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere (Архив Пфлюгера общей физиологии человека и животных).
Интересно, что подавляющее большинство физиологов во времена Хорвега не осознавало, что такое же по сути соотношение между ёмкостью и порогом возбуждения получил Алессандро Вольта ещё в 1803 г. Вольта ориентировался на ощущение покалывания, вызываемое электрическим током в его собственном пальце[991].
Необходимость радикального пересмотра общепринятых взглядов напугала научное сообщество, и многие известные учёные, такие, например, как Эдуард Пфлюгер, поспешили с порога отвергнуть[992] идею Хорвега, не слишком утруждая себя доказательствами. Прошло целых девять лет, пока в 1901 г. Жорж Вейс не установил[993] связь между электрическим зарядом, используемым для стимуляции, и её продолжительностью, продемонстрировав, что измерения Хорвега были правильными[994].
На основе экспериментальных данных Вейс предложил





